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Abstract N-Phenyl-N’-(3-quinolinyl)urea (1) has been
developed as a highly selective colorimetric and ratiometric
fluorescent chemosensor for fluoride ion based on a proton
transfer mechanism. Evidences for the mechanism were
provided by UV-vis and fluorescence titration and espe-
cially 1H and 19F NMR experiments. The sensor gave the
largest ratiometric fluorescent response reported so far
(Rmax/Rmin=2620) to fluoride. Taking H+ as the “recover-
ing reagent”, the sensor can be reversibly “used” and
“recovered” for several cycles with only a slight decay of
the response ability.
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Introduction

The design of chemosensors for fluoride ion is of
continuous interest due to the importance of fluoride in
dental care, treatment of osteoporosis and its possible
toxicity when administered in high doses [1, 2]. Various
kinds of fluoride sensors have been developed using urea or

thiourea [3–12], amide- [13–21], phenol- [22–24], and
cationic borane [25–27] receptors. Most of these sensors are
based on colorimetric changes or fluorescence quenching,
while only few of them experience fluorescence enhance-
ment [12, 15, 16, 24]. However, in most practical
applications, changes in fluorescence intensity are typically
unreliable and require frequent calibration because of a
variety of chemical, optical, or other instrument-related
factors [17]. In view of such problems, the use of
ratiometric fluorescent sensors [28, 29] may be an attractive
choice which measure the ratio of the fluorescent intensities
at two wavelengths and thus allow the estimation of the
analyte independent of these influencing factors. Up to
now, however, the reported ratiometric fluorescent sensors
are mainly for cations, and only a paucity of reports are for
fluoride ion [16, 17, 19, 29]. Hence, realization of
ratiometric measurement for fluoride ion is still a challenge.

As an extension of our work in anion recognition [30,
31], we have developed a new urea-based chemosensor 1
[32] (Scheme 1) which showed dual emission channels in
the presence of fluoride, thus allowing ratiometric fluores-
cence sensing of fluoride. The striking color and emission
color changes of the sensor enable colorimetric naked-eye
detection of fluoride as well.

Experimental

General

The tetra-n-butylammonium (Bu4N
+) salts of different

anions were purchased from Alfa Aesar. DMSO was used
without further purification. 1H NMR and 19F NMR spectra
were recorded on a Mercury plus-400 spectrometer at
400 MHz and 376.5 MHz, respectively, using TMS as an
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internal standard for 1H and aqueous NaF (−122.4 ppm) as
an external standard for 19F NMR. IR spectra were
measured with an HP5890II GC/NEXUS870. ESI-MS
measurements were performed with a Waters ZQ4000 mass
spectrometer. UV-vis spectra were performed on an
HP8453 spectrophotometer (1-cm quartz cell) at room
temperature. Fluorescence spectra were recorded on a
Hitachi F4500 fluorescence spectrophotometer (1-cm
quartz cell) at room temperature with slit width of 2.5 nm.
Fluorescence lifetimes were measured using a time-
correlated single photon counting FLS920 Spectrometer
(1-cm quartz cell), and decays were monitored at the
corresponding emission maxima of the samples. Fluores-
cence lifetimes were obtained through the fitting of the
decay spectra (χ2=1–1.2) by the in-built software.

Synthesis of N-phenyl-N’-(3-quinolinyl)urea (1)

Receptor 1 was synthesized using a method according to
literature reports [30]. 3-Aminoquinoline (2.16 g, 15 mmol)
was reacted with in situ prepared phenylisocyanate
(15 mmol) in toluene. The precipitate was filtered off and
recrystallized from ethanol to give the product as a white
solid (3.16 g, 80%). IR (KBr, ν/cm–1): 3379, 3055, 3020,
2970, 1716, 1619, 1597, 1532, 1492, 1441, 1292, 1229,
900, 740. 1H NMR (DMSO-d6, 400 MHz, 5 mM): 9.14 (s,
1H, NHa), 8.91 (s, 1H, NHb), 8.87 (s, 1H, H2), 8.53 (s, 1H,
H4), 7.93 (t, J=8.0, 1H, H8), 7.90 (d, J=7.2 Hz, 1H, H5),
7.60 (t, 1H, J=8.2 Hz, H7), 7.55 (t, 1H, J=8.0 Hz, H6),

7.50 (d, 2H, J=8.0 Hz, H2’), 7.10 (t, 2H, J=8.0 Hz, H3’),
7.10 (t, 1H, J=8.0 Hz, H4’). ESI-MS: 264.4 ([M +H]+,
calcd. 264.1).

Results and discussion

UV-vis anion titration studies

The anion binding and sensing properties of receptor 1
were studied firstly by UV-vis spectroscopic techniques in
DMSO (5×10–5 M, Fig. 1a). On addition of 20 equiv. of F–,
the ICT (intramolecular charge transfer) band of 1 at λmax

331 nm was enhanced significantly, while the π–π*
transition band displayed a bathochromic shift from 343
to 393 nm. On the other hand, AcO– and H2PO4

– only
caused a slight enhancement and bathochromic shift
(~5 nm) of the spectra which may be induced by hydrogen
bonding of the anions with the urea subunit [3]. No obvious
changes were observed upon addition of other anions,
suggesting that 1 has an excellent colorimetric selectivity
for F– over other anions in DMSO, especially AcO– and
H2PO4

– which have similar basicity and surface charge
density with F– [3, 4, 7, 11].

The interaction of receptor 1 with F– ion was investi-
gated in detail through UV-vis titration (Fig. 1b). On
addition of 0–5 equiv. of F–, only slight enhancement of the
band at 331 nm (ε from 6016 to 6340 M–1 cm–1) was
observed due to the hydrogen bonding between this anion
and the urea group [7]. With further addition of F–, the
absorption at 331 nm and a new band appeared at λmax

393 nm began to increase significantly and reached the
limit value after 20 equiv. of F– were added (393 nm, ε=
6356 M–1 cm–1; 331 nm, ε=27190 M–1 cm–1), indicating
that a fluoride-induced deprotonation of urea NH may have
occurred [6, 16]. This was confirmed by adding OH– (as
Bu4NOH) to the solution of 1, which gave similar UV-vis
spectral changes (Fig. S2) to those observed with F– ion.

Scheme 1 The structure of compound 1

Fig. 1 Absorption spectra of 1
(5×10–5 M in DMSO) after
addition of (a) 20 equiv. of
representative anions (F–, Cl–,
Br–, I–, AcO–, NO3

–, H2PO4
–,

HSO4
–, ClO4

– as Bu4N
+ salts)

and (b) 0, 1, 2, 3, 5, 7, 9, 11, 13,
15, 17, 19, 21 equiv. of F–.
Inset: (a) F– induced color
changes and (b) enlarged spectra
as 0–5 equiv. of F– were added
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The aforementioned results suggest that the sensor–fluoride
interaction was a two-step process: 1) at lower fluoride
concentration (0–5 equiv.) the F⋅⋅⋅H–N hydrogen bonding
occurred; and 2) with increasing fluoride concentration
(5–20 equiv.), excess fluoride interacted with the sensor-
fluoride complex and led to the deprotonation of the sensor
[7, 19].

The influence of other anions on the deprotonation
process induced by F– ion was also examined. In the
presence of 10 equiv. of foreign competing anions, the
sensitivity was repressed remarkably, as more F– ion (~90
equiv.) was needed to deprotonate receptor 1 completely
(Fig. S1). In a further study, 10 equiv. of each competing
anion were added to the deprotonated system, and the
results indicated that the protic anion HSO4

– can inhibit the
deprotonation greatly and another protic anion H2PO4

–

can also decrease the colorimetric changes slightly, while
other anions did not induce remarkable changes. Hence,
the protic anions HSO4

– and H2PO4
– should be the

repressive factors for the deprotonation process by
providing protons to the deprotonated receptor. Similarly,
protic solvent such as water can also reverse these
colorimetric changes (Fig. S3; vide infra).

During the deprotonation process, color changes from
colorless to yellow-green and “OFF-ON” emission colour
changes from dark purple to bright blue were observed
which allowed the fluoride ion to be detected by naked eyes
(Figs. 1, 2 and S4, S5).

Fluorescence titration

A fluorescence titration was subsequently performed in a
solution of 1 in DMSO (1×10−5 M). As shown in Fig. 2a,
the sensor 1 exhibits a weak intrinsic emission band at λmax

368 nm. Upon addition of 0–9 equiv. of F–, the band
decreased slightly, which was induced by the enhanced PET
(photoinduced electron transfer) quenching as the hydrogen-
bonded complex [1⋅F]– formed. Notably, the deprotonation

process had started, though not in dominance, after more
than 1 equiv. of F– was added, which was reflected by the
appearance of a new band at 474 nm which pertains to the
ICT induced emission of the deprotonated sensor. As more
F– was added, the deprotonation process was in dominance,
leading to sharper quenching of the band at 368 nm and
enhancement at 474 nm (Fig. 2b). After about 30 equiv. of
F– were added, the deprotonation process was completed.
However, only 20 equiv. of F– were needed to finish this
process in the UV-vis titration when a 5×10–5 M solution
of 1 was used, indicating that the deprotonation efficiency
by F– can be decreased as the concentration of 1
decreased. This may be attributed to the fact that the
water contained in the solvent DMSO (0.2%) can
somewhat reverse the deprotonation process and thus
reduce the deprotonation efficiency of fluoride ion, which
is more significant at low concentrations.

This PET and ICT modulated dual channel emission
provides an opportunity for elaborating 1 as a ratiometric
chemosensor for F–. Fig. 3 shows the variation of the
fluorescence intensity ratio R(I474/I368) vs the concentration
of F–. Although the bands at 474 nm and 368 nm started to
increase and decrease, respectively, upon addition of F–, the
value of R was small and only slightly enhanced before 9

Fig. 2 Fluorescence spectra of
1 (1×10−5 M in DMSO) upon
the addition of (a) 0, 1, 3, 5, 7,
9; (b) 11, 13, 15, 17, 19, 21, 23,
25, and 27 equivalents of F–.
Inset: F– induced emission color
changes and enlarged spectra
between 340–420 nm

Fig. 3 Ratiometric plot of I474/I368 versus the concentration of
fluoride
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Fig. 4 Fluorescence decay profiles of 1 (10 μM) at different fluoride concentrations in DMSO. (a) Receptor 1 alone; (b, c, d) with 5, 10, and 30
equiv. of F– (blue: 1; red: laser profiles). λex=330 nm; a and b, λem=368 nm; c and d, λem=474 nm

Fig. 5 Stack plot of the 1H NMR spectra of 1 with F− (as Bu4N
+ salt) and F− alone (bottom) (DMSO-d6, 400 MHz)
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equiv. of F– (90 μM) were added. As more F– were added to
the solution of 1, the R value increased significantly and
reached the limit value when 27 equiv. of F– (270 μM) were
added. A nearly linear plot of R vs the concentration of F–

resulted in R=19[F–]-270, r=0.996, n=7) (Fig. 3). There-
fore, sensor 1 can be used for ratiometric estimation of
fluoride ions between 150–270 μM. The ratio of the limiting
value in the absence and excess of anions, Rr (Rmax/Rmin),
which reflects the limiting dynamic range and resolution for
concentration measurements, is decisive. In this work the
sensor gave a much larger Rr value (up to 2620) than other
ratiometric fluorescent fluoride sensors reported so far
(≤ 548) [19].

No significant change of the emission was observed
upon addition of 30 equiv. of other anions except AcO– and
H2PO4

–, which showed obvious quenching of the band at
368 nm (Fig. S6) due to hydrogen bonding with the sensor.
As expected, the addition of OH− induced similar fluorescence
changes (Fig. S7) to the case of F–.

The interaction between F– and receptor 1 in DMSO has
also been investigated by the time-resolved fluorescence
technique, and representative fluorescence decay profiles of
1 with different concentrations of F– are shown in Fig. 4.
The free receptor 1 exhibited a single-exponential lifetime
(Fig. 4a, τf=1.11 ns). As 5 or 10 equiv. of F– were added,
the fluorescence decay of 1 was biexponential (Fig. 4b,
τf1=1.14 ns, τf2=14.17 ns; 4c, τf1=1.28 ns, τf2=14.46 ns),
indicating that there were two distinct species coexisting in
the solution (the anion-bound or deprotonated form and free
1). The contribution of the new longer component
amplitude increased as the concentration of F– was
increased and finally turned the decay to a single-
exponential one (Fig. 4d, τf=16.73 ns) when 30 equiv. of
F– were added which would deprotonate 1 completely.
These results clearly support that the lifetime changes of 1

in the presence of F– are due to the formation of new ICT
states [10].

1H NMR titration

More detailed information of the interaction of receptor 1
with F− was provided by 1H NMR titration experiments
carried out in DMSO-d6 (Fig. 5). In particular, a 5 mM
DMSO-d6 solution of 1 was titrated with F− of up to 10
equiv. Within addition of 1 equiv. of F−, continuous
broadening and distinct downfield shifts of the NH signals
as well as slight upfield shifts of the aromatic signals were
observed, indicating the formation of hydrogen bonding
interactions between F− and the urea unit. As 5 equiv. of F−

were added, the NH signals disappeared completely and a
new 1:2:1 triplet at 16.1 ppm with a coupling constant J=

Fig. 6 Stack plot of the 19F
NMR spectra of (a) 5 mM F−

(as Bu4N
+ salt); (b) 5 mM F−

and 5 mM compound 1; (c)
50 mM F− and 5 mM compound
1 (DMSO-d6, 376.5 MHz)

Fig. 7 Reversible sensing of F– (as Bu4N
+ salt in DMSO-0.2% H2O)

and recovering of the sensor by H+ (as HCl in DMSO-0.3% H2O) (▲
fluorescence emission at 474 nm and ● absorption band at 393 nm) in
a DMSO solution of 1 (1.0×10–5 M in fluorescent experiments and
5.0×10–5 M in UV-vis experiments)
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120 Hz appeared, which is due to the bi-fluoride ion (FHF–)
[33, 34]. In some recent reports [6, 19] the appearance of
this new triplet has been taken as an evidence for the
deprotonation of the receptor. However, in a control
experiment we found that the typical signal of FHF− also
appeared in the 25 mM DMSO-d6 solution of (Bu4N)F
(Fig. 5) without the sensor, indicating that the FHF− ion can
also be generated through deprotonation of the solvent by
(Bu4N)F itself [33]. The deprotonation of the urea group
was supported by the fact that all CH protons showed
distinct upfield (H2, 0.35; H4, 0.09; H5, 0.37; H6, ~0.31,
H7, ~0.31; H8, 0.25; H3’, 0.22; H4’, 0.43 ppm) or
downfield (H2’, 0.08 ppm) shifts compared with the free
sensor, arising from an overall change of the electron
distribution in the chromophore when the NH moiety was
deprotonated [33]. The more profound upfield shift of H2
than H2’ would suggest that deprotonation occurs at the
NHa fragment rather than NHb, inducing electron density
delocalization onto the aromatic rings and the upfield shifts
[7]. The disappearance of the NHb signal was owing to the
hydrogen bonding between this proton and excess F−

(Fig. 5) [12]. Interestingly, the upfield shift of H4 was
obviously less and the H2’ even showed a downfield shift.
This is rationalized considering the through-space polarization
effect exerted by the nearby urea oxygen atom (Fig. 5) which
would acquire more electron density from the negative N
atom following the deprotonation [7]. The deprotonation
process was completed within addition of 5 equiv. of F– as
no further changes were observed with the addition of up to
10 equiv. of fluoride.

On the other hand, excessive OH– induced similar but
more distinct upfield shifts of the corresponding signals
resulted from the stronger hydrogen bonds between OH−

and NHb in the sencond step (Fig. S8). 19F NMR (DMSO-
d6, Fig. 6) provides direct evidences for the sensor-fluoride
hydrogen bonding interactions in the first step (1 equiv. F–

and 1). The signal of the free fluoride at -101.7 ppm was
downfield shifted to -90.9 ppm (Δδ=10.8 ppm), a typical
result of hydrogen bonding of fluoride [35]. In the second
step (10 equiv. F– and 1), the fluoride signal was shifted to -
105.4 ppm (Δδ=–3.7 ppm compared to the free fluoride
ion) which may be resulted from the increased shielding
effects of the anion-characterized sensor on the fluoride ion
[36, 37]. However, the signal of the expected hydrogen
bound fluoride did not appear which may be a result of fast
proton exchanging between the bound fluorides and the
free ones [12].

Reversibility studies

Based on the deprotonation mechanism of the sensor,
recovery of the deprotonated sensor should be possible. In
fact, it had been discovered that protic solvents such as

water (Fig. S3) and ethanol can reverse the deprotonation-
induced spectra and color changes [6], while the deproto-
nation can hardly proceed again once much protic solvent
was brought in the system. Taking H+ (as 0.01M HCl
DMSO-0.3% H2O solution) as the “recovering reagent” can
avoid this problem which only brings in small amounts of
water while functions more effectively than protic solvents.
As shown in Fig. 7, the fluorescent emission band as well
as the absorption band can be reversibly turned “ON” and
“OFF” for at least five times by alternative adding of 30
equiv. of F− (as Bu4N

+ salt) and 4 equiv. of H+. There was
only a slight decay of the responses, which may result from
the competitive water brought in by the HCl solution [4].
These results proved H+ to be a proper “recovering reagent”
for the deprotonated sensor. In another view, the sensor can
function as a fluorescent and colorimetric switch modulated
by F−/H+. Like other molecular switches, it has the
potential to be utilized in designing new molecular logic
gates [38]. In further studies, we found that the compound 1
presented remarkably different colorimetric and fluorescent
properties under acidic conditions from those under neutral
and basic conditions, which may be induce by protonation
of the nitrogen of quinoline. Additionally, in other aprotic
solvents such as MeCN or CHCl3, much more amounts of
F− (> 300 equiv.) were needed to deprotonate the sensor
due to the weaker deprotonation ability of these solvents
than DMSO [5].

Conclusions

We demonstrated a 3-quinolinyl substituted urea as a novel
colorimetric and fluorescent ratiometric chemosensor for
fluoride. The sensor showed the largest Rr value among the
ratiometric fluorescent fluoride sensors reported so far. The
colorimetric and ratiometric properties of the sensor are
attributed to the anion-induced deprotonation of the urea
subunit as confirmed by UV-vis, fluorescence and NMR
results. Furthermore, the sensor can be reversibly “used”
and “recovered” for at least five times with H+ as the
recovering reagent.
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